Tags Are Related: Measurement of Semantic Relatedness Based on Folksonomy Network

نویسندگان

  • Ch. Wu
  • B. Zhou
چکیده

Folksonomy and tagging systems, which allow users to interactively annotate a pool of shared resources using descriptive tags, have enjoyed phenomenal success in recent years. The concepts are organized as a map in human mind, however, the tags in folksonomy, which reflect users’ collaborative cognition on information, are isolated with current approach. What we do in this paper is to estimate the semantic relatedness among tags in folksonomy: whether tags are related from semantic view, rather than isolated? We introduce different algorithms to form networks of folksonomy, connecting tags by users collaborative tagging, or by resource context. Then we perform multiple measures of semantic relatedness on folksonomy networks to investigate semantic information within them. The result shows that the connections between tags have relatively strong semantic relatedness, and the relatedness decreases dramatically as the distance between tags increases. What we find in this paper could provide useful visions in designing future folksonomy-based systems, constructing semantic web in current state of the Internet, and developing natural language processing applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach

In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...

متن کامل

Characterizing Semantic Relatedness of Search Query Terms

Mining for semantic information in search engine query logs bears great potential for both the optimization of search engines and bootstrapping Semantic Web applications. The interaction of a user with a search engine (more specifically clicklog information) has recently been viewed as implicit tagging of resources by query terms. The resulting structure – previously called a logsonomy – exhibi...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Measuring Semantic Relatedness between Flickr Images: From a Social Tag Based View

Relatedness measurement between multimedia such as images and videos plays an important role in computer vision, which is a base for many multimedia related applications including clustering, searching, recommendation, and annotation. Recently, with the explosion of social media, users can upload media data and annotate content with descriptive tags. In this paper, we aim at measuring the seman...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computing and Informatics

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2011